文字探勘基礎:從R語言入門
作 者:譚躍
出版社別:五南
書 系:研究&方法
出版日期:2023/09/20(1版1刷)
ISBN:978-626-366-574-3
E I S B N:9786263665699
書 號:1H3N
頁 數:196
開 數:16K
定 價:350元
【內容】
⊙沒有資訊工程背景的文科生也能學會程式語言,適合人文社會科學領域之學生、研究人員自學。
⊙理論與實作兼具,深入淺出說明用R語言執行文字探勘的流程及方法,操作步驟清楚易懂。
⊙內容包含資料清理、斷詞和詞頻、情緒分析和字典法、tf-idf計算和應用、主題建模、機器學習、語意網絡的社會網絡分析,以及網站資料的抓取等。
【自學R語言,順利掌握文字探勘】
文字探勘是以文字作為分析的資料,藉由技術識別、擷取有價值的部分,有系統地管理、整合和應用文字所提供的訊息,像社群網站上常見的「文字雲」即是一種。
本書針對中文透過R語言操作基礎的文字探勘,從人文社會科學領域闡述編程的概念,可使自學者更容易掌握文字探勘的技能。內容包含了解R、文字資料的清理、斷詞和詞頻、情緒分析和字典法、tf-idf值的計算和應用、主題建模、機器學習、詞的關係、語意網絡的社會網絡分析,以及網站資料抓取等。
【目錄】
Chapter 1 R語言下載與設置
第一節 R軟體下載
一、前言
二、R下載教學
第二節 介紹R
一、R介面與設置
第三節 RStudio下載
一、RStudio下載教學
第四節 介紹RStudio
一、RStudio介面與設置
Chapter 2 讀入與初步了解R資料
第一節 前言
第二節 設定R的工作環境
一、設定工作的編碼系統
二、設定工作資料夾
第三節 將資料讀入R
一、將不同形式的檔案讀入R
二、物件命名
三、執行R程式
第四節 了解R資料
一、透過物件區的菜單鳥瞰
二、指代資料中變項和觀察值
三、描述R的資料特徵
四、以圖形呈現變項的特徵
第五節 儲存資料
Chapter 3 資料的初步清理:使用dplyr
第一節 前言
一、安裝套件
第二節 用dplyr整理資料
一、重新排列資料(遞增、遞減)
二、選擇資料
三、刪除資料
四、修改變項
五、概括內容資料(樣本)的特徵
六、分組處理的功能
Chapter 4 資料的進階清理
第一節 前言
第二節 增加變項
一、直接產生並賦值
二、從舊變項產生
三、從文字變項(strings)中提取
第三節 清理文字資料(strings)
一、strings的清理功能介紹
二、查找
三、替換
四、黏貼
第四節 編碼員間編碼信度
一、隨機抽取樣本
二、交叉編碼
三、計算編碼員間信度或電腦與編碼員間效度
第五節 畫資料的時間序列圖
一、介紹
二、計算每天的報導量
三、定義時間變項
四、使用ggplot2畫圖
Chapter 5 斷詞和詞頻
第一節 前言
第二節 斷詞
一、基本概念介紹
二、使用tidytext的unnest_tokens指令斷詞
三、計算詞頻
四、套用停頓詞字典
五、畫圖
六、套用用戶字典
七、使用jiebaR斷詞
第三節 詞頻分析
一、描述一整個文集
二、比較不同文集之間的差異
Chapter 6 情緒分析和字典法
第一節 前言
第二節 情緒分析簡介
第三節 字典法和常用的情緒字典
第四節 情緒詞的詞頻計算
第五節 情緒分析的研究應用
一、套用和驗證字典
二、更精準的情緒測量
三、考察情緒分數與其他變項之間的關係
Chapter 7 tf-idf值的計算和應用
第一節 tf-idf的概念介紹
第二節 tf-idf的計算
第三節 tf-idf的應用
一、比較不同文類的獨特性
二、在機器學習中代表文檔的內容特徵
三、作為過濾關鍵詞的標準
第四節 其他過濾關鍵詞的方法
第五節 文字探勘結果的統計分析
Chapter 8 主題建模
第一節 前言
第二節 LDA的原理和應用步驟
一、第一步:斷詞
二、第二步:詞彙向量化、尺度縮減及製作dtm
三、第三步:決定最佳主題數目
四、第四步:進行主題建模並為主題命名
五、 第五步:考察每個主題和metadata之間的關係
六、第六步:報告主題出現的比例、資料檔合併
第三節 K-means的原理和應用步驟
Chapter 9 有監督式的機器學習
第一節 機器學習在文字探勘的應用
第二節 機器學習的定義和基本步驟
第三節 機器學習的程式碼練習:迴歸模型
一、讀入有標示的資料,並分成訓練集和測試集
二、分別對訓練集和測試集的文字資料建立dfm
三、使用演算法從訓練集中學習,建立一個模型
四、用模型預測測試集中的資料
五、測量表現(measure model performance)
六、用訓練好的模型預測未標示的資料
第四節 機器學習的程式碼練習:分類模型
一、SVM(SUPPORT VECTOR MACHINE)
二、LOGISTIC REGRESSION
三、NAÏVE BAYES
四、WORDSCORES TEXT MODEL
Chapter 10 詞的關係
第一節 前言
第二節 Bigram及其應用
一、Bigram的製作
二、Bigram的詞頻計算
三、Bigram的應用
第三節 共現詞(concordance)
一、詞的關係一:出現在同一篇文章中
二、詞的關係二:出現在一定的距離內
Chapter 11 語意網絡的社會網絡分析
第一節 前言
第二節 社會網絡分析的重要概念介紹
第三節 讀入網絡資料
第四節 網絡資料的形式和轉換
一、網絡資料的基本形式
二、網絡資料不同形式之間的轉換
三、Two-mode data
第五節 語意網絡的描述性分析
一、整體網絡分析
二、節點分析
三、組和次團體的分析(subgroups and communities)
第六節 分析兩個網絡的關係
一、比較兩個網絡的相似程度
二、計算兩個網絡之間的相關程度
三、考察多個網絡之間的關係
Chapter 12 抓取網站資料
第一節 前言
第二節 觀察資料
一、了解資料型態
二、觀察原始碼
第三節 資料抓取
一、套件介紹
二、抓取一篇文章
三、抓取一頁搜尋頁面的所有文章
四、抓取所有搜尋頁面的所有文章
參考文獻
【關於教科書訂購說明】
☆ 單本即有折扣,將商品放入購物車就可以看見優惠價唷!五本以上團購更便宜!加入會員訂購,還可累積購物金!
★ 若有急需用書,可先LINE私訊詢問庫存呦~
☆ 出貨時間:有現貨的,2個工作日內出貨;無現貨,約3~5個工作日 出貨
【寄送方式說明】
❶ 實體門市取貨
全台麗文校園書局皆可取貨,貨到書局將會以簡訊通知。
❷ 超商取貨
提供7-11及全家超商取貨(需先付款,無貨到付款)。
❸ 一般宅配
本公司主要與黑貓宅急便配合,送達到您指定的地址。
※當您於本網站消費交易完成後,電子發票將會以電子郵件寄給您;如需紙本發票請於下訂時於備註欄位說明。
【付款方式說明】
❶ ATM轉帳、匯款
銀行│第一銀行-三民分行
代號│007
戶名│麗文文化事業股份有限公司
帳號│704-10-051861
※實體ATM每日轉帳最高限額為3萬,若訂購金額超過3萬元,請分兩天或是使用不同的銀行帳戶轉帳。
❷ 信用卡(可分期,需負擔手續費)
凡各家銀行的VISA、MASTER、Union Pay、JCB信用卡皆可使用。
❺ 超商代碼
系統會發送繳費代碼至您的電子信箱,需自行至「超商機器ex:iBon」輸入代碼,產生繳費單後前往櫃檯繳費。
❼ 免卡分期
麗文校園購與「zingala銀角零卡」「第一資融」以及「皮路後支付」合作,讓您免用信用卡就可以購物。
如有使用上的問題,可以先與揪小編聯絡唷!。
※請注意:超過7天未付款之訂單則訂單自動失效;免卡分期訂單成立起7天內未主動聯繫亦同。
【其他說明】
❶關於出貨
1.商品為不缺貨前提下,訂單完成付款後2-4個工作天將會出貨(不含例假日及國定假日);若商品缺貨則須等待1-2週。
2.麗文校園揪來玩保留訂單接受與否權利,若因交易條件有誤或有其他情形導致我們無法接受您的訂單,將以E-mail發送取消訂單通知給您,造成不便敬請見諒。
❷關於退貨
1.非門市現場消費享有七天猶豫期,收到商品當天往後算七天內若是決定不買,則協助不要拆封,一拆封視同願意購買。
2.若真的決定不購買商品要退貨,請聯繫我們LINE線上客服,我們會盡速為您處理。
❸關於新品瑕疵與維修保固
1.全新商品享有購買七日內,新品瑕疵的換新保障;但新品瑕疵與否,是由商品代理商或原廠所判定,麗文校園揪來玩僅能依據判定的結果給予協助。若是原廠判定非新品瑕疵則無法換新,需改為維修的方式處理。
2.新品瑕疵換新的作業時間,將依各廠商的流程而定,最快2個工作天,慢的話也可能需要到15個工作天。
3.購買超過七日後,維修服務由原廠提供。如有需要維修,麗文校園揪來玩可以代為送修,但送修如需運費時(EX:原廠沒有提供免費收件服務),則需由您負擔送修的運費(運費約為100元起,因商品大小而異)。
【華碩的維修服務】